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ON QUASI–HOMOGENEOUS COPULAS

Gaspar Mayor Radko Mesiar and Joan Torrens

Quasi-homogeneity of copulas is introduced and studied. Quasi-homogeneous copulas
are characterized by the convexity and strict monotonicity of their diagonal sections. As
a by-product, a new construction method for copulas when only their diagonal section is
known is given.
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1. INTRODUCTION

Homogeneity of order k of real functions reflects their regularity with respect to the
inputs with the same ratio in the form

F (λx1, . . . , λxn) = λkF (x1, . . . , xn). (1)

In several classes of special functions, such as triangular norms or copulas, the
homogeneity is a rather restrictive property. A generalized homogeneity should
reflect the multiplicative constant λ as well as the original value F (x1, . . . , xn), and
thus it should be expressed on the form

F (λx1, . . . , λxn) = G(λ, F (x1, . . . , xn)) (2)

where G is a binary function. In [9], the concept of quasi-homogeneity was introduced
by considering G(a, b) = ϕ−1(f(a)ϕ(b)), with ϕ an injective function and f an
arbitrary function. Hence a function F is called quasi-homogeneous if

F (λx1, . . . , λxn) = ϕ−1(f(λ)ϕ(F (x1, . . . , xn))). (3)

The aim of this paper is to discuss the class of quasi-homogeneous copulas. In
the next section, we recall some preliminary notions and results on homogeneity
of t-norms and copulas, and on quasi-homogeneity of t-norms. In Section 3, we
represent quasi-homogeneous copulas by means of their diagonal sections, while in
Section 4 we characterize all diagonal sections of quasi-homogeneous copulas. As
a consequence, a new construction method for copulas when only their diagonal
section is known, is obtained. Finally several concluding remarks are included.
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2. PRELIMINARIES

We will suppose the reader to be familiar with some basic concepts and results on
copulas, that can be found in [15]. Recall that a binary function C : [0, 1]2 → [0, 1]
is said to be a copula if it satisfies the following properties:

C1) C(x, 0) = C(0, x) = 0 for all x ∈ [0, 1],

C2) C(x, 1) = C(1, x) = x for all x ∈ [0, 1],

C3) for all x, x′, y, y′ in [0, 1] with x ≤ x′ and y ≤ y′,

C(x′, y′)− C(x, y′)− C(x′, y) + C(x, y) ≥ 0.

The weakest copula is the ÃLukasiewicz copula whereas the strongest one is the min-
imum. They are respectively given by

W (x, y) = max{0, x + y − 1} and M(x, y) = min{x, y}

for all x, y ∈ [0, 1].
Similarly, basic notions on t-norms are also assumed and they can be found

in [14]. Recall that a binary function T : [0, 1]2 → [0, 1] is said to be a t-norm
if it is associative, commutative, non-decreasing in each variable and has neutral
element 1, that is T (x, 1) = T (1, x) = x for al x ∈ [0, 1]. Thus, we only recall here
some definitions and results that will be used in the paper.

Definition 1. A function F : [0, 1]2 → [0, 1] is said to be homogeneous of degree
k > 0 if it satisfies

F (λx, λy) = λkF (x, y) for all x, y, λ ∈ [0, 1]. (4)

The homogeneity condition has been characterized for t-norms as well as for
copulas and the results are as follows.

Theorem 2. (Alsina et al. [2], Theorem 3.4.1) A t-norm T is homogeneous if and
only if either k = 1 and T is the minimum t-norm, or k = 2 and T is the product
t-norm.

Theorem 2. (Nelsen [15], Theorem 3.4.2) A copula C is homogeneous if and only
if 1 ≤ k ≤ 2 and C is the member Cθ of the Cuadras-Augé family with θ = 2− k.

Recall that the Cuadras–Augé family is the parametric family of copulas given
by

Cθ(x, y) = (min{x, y})θ(xy)1−θ for all x, y ∈ [0, 1]

with θ ∈ [0, 1].
Some generalizations of the homogeneity condition have been studied, specially

in the framework of t-norms (see [2]). One of these generalizations is introduced
by substituting λk by any arbitrary function f : [0, 1] → [0, 1], but this leads to no
new solutions for t-norms (see [2], Corollary 3.4.2). The widest generalization of
homogeneity introduces the so-called quasi-homogeneity in the following terms.
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Definition 2. A function F : [0, 1]2 → [0, 1] is said to be quasi-homogeneous if
there exists a continuous, strictly monotonic function ϕ : [0, 1] → R and a function
f : [0, 1] → [0, 1] such that

F (λx, λy) = ϕ−1(f(λ)ϕ(F (x, y))) for all x, y, λ ∈ [0, 1]. (5)

In this case it will be said that F is (ϕ, f)-quasi-homogeneous.

Quasi-homogeneous t-norms have been also characterized allowing for new so-
lutions. The result is due to Ebanks in 1998 (see [9]), see also [2] for the current
version.

Theorem 3. (Alsina et al. [2], Theorem 3.4.3) A t-norm T is quasi-homogeneous
if and only if it is a member of the family Tα with 0 ≤ α ≤ +∞, where

Tα(x, y) =

{

(x−α + y−α − 1)
−1/α

if min{x, y} > 0

0 otherwise.

for α such that 0 < α < +∞, and T0 = TP is the product t-norm and T+∞ = TM is
the minimum t-norm.

Here, fα(λ) = λc with arbitrary c > 0 for all α ∈ [0,+∞], and the ϕα are given
by

ϕα(x) = k(1 + xα)−c/α, for 0 < α < +∞

and
ϕ0(x) = kxc/2 and ϕ+∞(x) = kxc.

3. QUASI–HOMOGENEOUS COPULAS

In this section we want to characterize quasi-homogeneous copulas, that is, those
copulas that satisfy Definition 2. Firstly, let us deal with the easier generalization
of homogeneity that consists in substituting λk by an arbitrary function f .

Proposition 1. Let f : [0, 1] → [0, 1] be an arbitrary function and let C be a
copula such that

C(λx, λy) = f(λ)C(x, y) for all x, y, λ ∈ [0, 1].

Then f(λ) = λk with 1 ≤ k ≤ 2 and C is a member of the Cuadras–Augé family.

P r o o f . Taking x = y = 1 we have C(λ, λ) = f(λ) for all λ ∈ [0, 1], that is, f has to
be the diagonal section of C and, in particular, f must be continuous with f(0) = 0
and f(1) = 1. On the other hand,

f(λx) = C(λx, λx) = f(λ)f(x)

for all λ, x ∈ [0, 1]. Consequently, f must be of the form f(λ) = λk for some k > 0
(see for instance [1]). That is C must be homogeneous of degree k and hence the
result. ¤
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Thus, as for the case of t-norms, no new solutions appear for copulas with this
generalization. On the contrary, for the quasi-homogeneity condition, we will see
that there are a lot of copulas satisfying Equation (5). First let us characterize the
structure of such copulas.

Theorem 4. A copula C is quasi-homogeneous if and only if its diagonal section
is strictly increasing and C is given by

C(x, y) =

{

δ
(

(x ∨ y)δ−1
(

x∧y
x∨y

))

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).
(6)

In this case, C is (ϕ, f)-quasi-homogeneous with f(λ) = λc and ϕ(x) =
(

δ−1(x)
)c

for arbitrary c > 0.

P r o o f . Let us consider a copula C that verifies Equation (5) for a continuous
strictly monotonic function ϕ : [0, 1] → R and an arbitrary function f : [0, 1] → [0, 1].
We can write

ϕ(C(x, x)) = f(x)ϕ(C(1, 1)) = f(x)ϕ(1)

for all x ∈ [0, 1]. It is clear that if C satisfies Equation (5) for functions ϕ, f it also
satisfies it for functions kϕ, f with k 6= 0, and consequently we can suppose ϕ(1) = 1.
Thus we have f(x) = ϕ(C(x, x)) = ϕ(δ(x)) where δ is the diagonal section of C, and

f(xy) = ϕ(C(xy, xy)) = f(x)ϕ(C(y, y)) = f(x)f(y).

That is, f satisfies the multiplicative Cauchy equation and since ϕ is strictly mono-
tonic this implies that also f is strictly monotonic, and, hence that f(λ) = λc for all
λ ∈ [0, 1] with c > 0 (see again [1]). Thus C satisfies

ϕ(C(λx, λy)) = λcϕ(C(x, y)) for all x, y, λ ∈ [0, 1] (7)

with c > 0. Now, taking x = y = 1 we obtain ϕ(δ(λ)) = λc which implies that δ
must be strictly increasing and that ϕ(x) =

(

δ−1(x)
)c

with c > 0.
Finally, Equation (7) can be written now as

(

δ−1(C(λx, λy))
)c

= λc
(

δ−1(C(x, y))
)c

or equivalently
δ−1(C(λx, λy)) = λδ−1(C(x, y))

for all x, y, λ ∈ [0, 1]. If we consider the function F : [0, 1]2 → [0, 1] defined by
F (x, y) = δ−1(C(x, y)) we obtain that F is homogeneous of degree 1. Moreover,
whereas max{x, y} > 0 we can write

• if x ≤ y

F (x, y) = F

(

y
x

y
, y

)

= yF

(

x

y
, 1

)

= yδ−1

(

C

(

x

y
, 1

))

= yδ−1

(

x

y

)

• if y ≤ x

F (x, y) = F
(

x, x
y

x

)

= xF
(

1,
y

x

)

= xδ−1
(

C
(

1,
y

x

))

= xδ−1
(y

x

)

.
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That is, F is given by

F (x, y) =

{

(x ∨ y)δ−1
(

x∧y
x∨y

)

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

where ∨ stands for maximum and ∧ for minimum. Thus C must be given by Equa-
tion (6).

Reciprocally, if C is a copula given by Equation (6) with diagonal section δ
strictly increasing then clearly C is quasi-homogeneous with functions f(λ) = λc

and ϕ(x) = (δ−1(x))c with c > 0. ¤

Remark 1. i) Due to special properties of copulas, it is possible to relax the
requirements of continuity and strict monotonicity of the function ϕ in Definition 2
into the requirements that Rang(ϕ) contains at least three elements.

ii) Observe that a function S : [0, 1]2 → [0, 1] is called a semi-copula whenever
it is non-decreasing in both coordinates and S(1, x) = S(x, 1) = x for all x ∈ [0, 1]
(see [8]). A semi-copula Q : [0, 1]2 → [0, 1] is called a quasi-copula (see [8, 12, 13] or
[15]) if it is 1-Lipschitz, i. e.,

|Q(x1, y1)−Q(x2, y2)| ≤ |x1 − x2|+ |y1 − y2| for all x1, x2, y1, y2 ∈ [0, 1].

Note that Proposition 1 as well as Theorem 4 can be applied to continuous semi-
copulas and quasi-copulas without any modification.

iii) Note also that all quasi-homogeneous copulas are symmetric in view of the
representation (6).

From the previous theorem, it is clear that for finally characterizing quasi-homo-
geneous copulas we only need to find those admissible diagonals of copulas, that are
strictly increasing and for which Equation (6) effectively gives a copula. This will
be done in next section, but in the more general case where the function δ needs not
to be strict.

4. DIAGONAL SECTIONS OF QUASI–HOMOGENEOUS COPULAS

Given a copula C it is well known that its diagonal section is a function δ : [0, 1] →
[0, 1] that satisfies:

d1) δ(x) ≤ x for all x ∈ [0, 1] with δ(0) = 0 and δ(1) = 1,

d2) δ is non-decreasing,

d3) δ is 2-Lipschitz, i. e. |δ(x)− δ(y)| ≤ 2|x− y| for all x, y ∈ [0, 1].

Let us denote by D the set of all functions δ : [0, 1] → [0, 1] that can be the
diagonal section of a copula, that is, satisfying conditions from d1) to d3). In
general, there are a lot of copulas with the same diagonal section δ ∈ D. In this
sense many authors have studied, fixing a function δ ∈D, how to construct a copula
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C with diagonal section δ. This has been done in different manners and contexts
(see [7, 10, 11] obtaining respectively Bertino copulas, diagonal copulas, MT-copulas
and so on (see [5]).

Our interest now is to study in what cases a copula C can be obtained from its
diagonal through equation (6). In fact, note that such equation can be generalized for
diagonals δ ∈ D in general, not necessarily strictly increasing, by using the pseudo-
inverse function δ(−1). Specifically, given a non-decreasing function δ : [0, 1] → [0, 1]
its pseudo-inverse δ(−1) : [0, 1] → [0, 1] is given by (see [14])

δ(−1)(x) = sup{t ∈ [0, 1] | δ(t) ≤ x} for all x ∈ [0, 1]. (8)

Now we can study when a copula C can be constructed from its diagonal through
the expression

C(δ)(x, y) = δ

(

(x ∨ y)δ(−1)

(

x ∧ y

x ∨ y

))

for all (x, y) 6= (0, 0) (9)

and C(0, 0) = 0. This generalization is important because it will allow us to obtain
many more representative examples. For instance the following one.

Example 1. The weakest copula W (x, y) = max{x+y−1, 0} has diagonal section
δW given by δW (x) = max{2x − 1, 0} and it can be constructed from δ through
equation (9). Note that however W is not quasi-homogeneous since its diagonal is
not strictly increasing.

Theorem 5. Let δ ∈ D. If δ is convex then the binary operation C(δ) given by
equation (9) is a (commutative) copula with diagonal section δ.

P r o o f . Evidently, C(δ)(x, 1) = C(δ)(1, x) = x,C(δ)(x, 0) = C(δ)(0, x) = 0 and
C(δ)(x, y) = C(δ)(y, x) for all x, y ∈ [0, 1]. Thus, the only thing to show C(δ) is a
copula is its 2-increasingness. Denote

a = sup{x ∈ [0, 1] | δ(x) = 0},

since δ is convex it must be strictly increasing on [a, 1]. We denote by d−1 the inverse
of δ : [a, 1] → [0, 1], then d−1 : [0, 1] → [a, 1] is given by

d−1(x) = δ(−1)(x) = sup{z ∈ [0, 1] | δ(z) ≤ x},

where δ(−1) is the pseudo-inverse of δ (see (8)) and C(δ)(x, y) can be written as

C(δ)(x, y) = δ

(

(x ∨ y)d−1

(

x ∧ y

x ∨ y

))

for all (x, y) 6= (0, 0). It is easy to see that for y ≤ x, it is

C(δ)(x, y) = 0 ⇐⇒ y ≤ xδ
(a

x

)

or x ≤ a.

Moreover, for y < x, C(δ) is non-decreasing in y, and this fact together with the
symmetry of C(δ) reduces the cases for 2-increasingness to be checked for two cases:
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i) 2-increasingness on squares whose diagonal is on the main diagonal of [0, 1]2,

ii) 2-increasingness on rectangles contained in the region where C(δ) is positive
for y < x.

In the first case it should be shown that for 0 ≤ u < v ≤ 1 it holds

δ(u) + δ(v)− 2δ
(

vd−1
(u

v

))

≥ 0. (10)

Since δ ≥ δW we have

δ

(

u + v

2v

)

≥ 2
u + v

2v
− 1 =

u

v
, that is,

u + v

2
≥ vd−1

(u

v

)

,

and thus

v − vd−1
(u

v

)

≥ vd−1
(u

v

)

− u.

The convexity of δ then ensures

δ(v)− δ
(

vd−1
(u

v

))

≥ δ
(

vd−1
(u

v

))

− δ(u)

which is equivalent to (10).
To prove case ii), one should show that for [u, u′]× [v, v′] in positive area of C(δ)

and such that v′ ≤ u, it holds

δ
(

ud−1
( v

u

))

+ δ

(

u′d−1

(

v′

u′

))

− δ

(

ud−1

(

v′

u

))

− δ
(

u′d−1
( v

u′

))

≥ 0 (11)

Due to concavity of d−1, the function h(x) = d−1(x)/x is decreasing and it holds

d−1
(

v′

u′

)

− d−1
(

v
u′

)

v′−v
u′

≥
d−1

(

v′

u

)

− d−1
(

v
u

)

v′−v
u

,

that is,

u′
(

d−1

(

v′

u′

)

− d−1
( v

u′

)

)

≥ u

(

d−1

(

v′

u

)

− d−1
( v

u

)

)

.

Now, due to convexity of δ and decreasingness of h, the last inequality reads

δ

(

u′d−1

(

v′

u′

))

− δ
(

u′d−1
( v

u′

))

≥ δ

(

ud−1

(

v′

u

))

− δ
(

ud−1
( v

u

))

which is equivalent to (11). ¤

Example 2. Fix α ∈ [0, 1/2] and let δα : [0, 1] → [0, 1] be the convex function in
D given by

δα(x) =

{

0 if x ≤ α
x−α
1−α otherwise.
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By applying the previous theorem to these functions δα, we obtain a family of
parametric copulas C(δα) given by

C(δα)(x, y) = max

{

0,
α(x ∨ y) + (1− α)(x ∧ y)− α

1− α

}

,

with boundary members C(δ0) = M and C(δ1/2) = W . In Figure 1 we can see the
parametric family of diagonals (δα) with α ∈ [0, 1/2], and the corresponding copulas
C(δα).

1/2

α 1/2

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡¡

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢

δα

­
­
­
­
­
­
­
­
­
­
­­

1/2

1/2α

α A
A
A
A
A
A
A
A

HHHHHHHH

0

(∗)

Fig. 1. Parametric family of diagonals (δα) (left) and copulas C(δα) (right) of Example 2,

where (∗) stands for α(x∨y)+(1−α)(x∧y)−α

1−α
.

Theorem 6. Let δ ∈ D be strictly increasing. Then the binary operation C(δ)

given by equation (6) is a (commutative) copula with diagonal section δ if and only
if δ is convex.

P r o o f . From the previous theorem we only need to prove that when C(δ) is a
copula then δ must be convex. But if C(δ) is a copula (quasi-copula is enough) it is
1-Lipschitz, i. e.,

C(δ)(x, y2)− C(δ)(x, y1) ≤ y2 − y1 for all x, y1, y2 with y1 ≤ y2.

For z ∈]0, 1[ and ε ∈]0, 1− z[ put

x =
z

z + ε
, y1 =

zδ(z)

z + ε
, y2 =

zδ(z + ε)

z + ε
.

Then, since δ is strictly increasing we have δ(−1) = δ−1, and thus

C(δ)(x, y2)− C(δ)(x, y1) = δ(z)− δ

(

z2

z + ε

)

≤ y2 − y1 =
δ(z + ε)− δ(z)

z+ε
z

.
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Note that z2

z+ε = z − ε z
z+ε and thus the equation above can be written as

δ(z)− δ
(

z − ε z
z+ε

)

ε z
z+ε

≤
δ(z + ε)− δ(z)

ε
. (12)

Finally, since δ is 2-Lipschitz, it has continuous derivative on a union of open subin-
tervals of [0, 1] of the form ∪k∈K ]ak, bk[ with

∑

k∈K(bk−ak) = 1. This fact together
with equation (12) implies the convexity of δ. ¤

Corollary 1. Let C : [0, 1]2 → [0, 1] be a binary operation with continuous diag-
onal δ(x) = C(x, x). Then C is a quasi-homogeneous copula if and only if δ is a
strictly increasing convex function and C is given by equation (6).

Example 3. Fix k ∈ [0, 1[ and α such that max{0, 2k − 1} ≤ α ≤ k. Let δk,α :
[0, 1] → [0, 1] be the convex strictly increasing function in D given by

δk,α(x) =

{

αx
k if x ≤ k
α−1
k−1x + k−α

k−1 otherwise.

By applying Theorem 6 to these functions δk,α, we obtain a family of two-parametric
quasi-homogeneous copulas C(δk,α) given by C(δk,α)(x, y) =











x ∧ y if (x ∨ y) ≥ α(x ∧ y)

x ∧ y + α−k
k−1 (x ∨ y) + k−α

k−1 if (k−1)(x∧y)+(α−k)(x∨y)
α−1 ≤ k

α
k(α−1) ((k − 1)(x ∧ y) + (α− k)(x ∨ y)) otherwise

with boundary member C(δ0,0) = M and whose limit when k → 1 is given by the
weakest copula W . This parametric family for the case k = 1/2 and 0 ≤ α ≤ 1/2
can be viewed in Figure 2.

Remark 2. In view of the fact that the class of all diagonals sections of copulas
coincides with the class of all diagonal sections of quasi-copulas, it can be shown that
there are no proper quasi-homogeneous quasi-copulas, i. e., each quasi-homogeneous
quasi-copula is necessarily a copula. On the other hand, a continuous semi-copula S
is quasi-homogeneous and given by (6) if and only if its diagonal section δ : [0, 1] →
[0, 1] given by δ(x) = S(x, x) is an automorphism of [0, 1] such that the function
h : ]0, 1] → [0, 1] given by h(x) = δ(x)/x is non-decreasing. Put, for example,
δ(x) = xc with c > 0. Then h(x) = xc−1 is non-decreasing for c ≥ 1, and the
corresponding semi-copula S is given by

S(x, y) = (x ∧ y)(x ∨ y)c−1 for all x, y ∈ [0, 1].

Recall that S is a copula (quasi-copula) only if δ is 2-Lipschitz, i. e., if c ∈ [1, 2] (and
then it belongs to Cuadras–Augé family).

Similarly, δ(x) = max{x/3, 3x− 2} is an automorphism of [0, 1] such that h(x) =
max{1/3, 3 − 2/x} is increasing. The corresponding semi-copula S is given on the
triangle determined by points (1, 1/4), (1, 1) and (3/4, 3/4) by S(x, y) = y + 2x− 2
and thus it is not a copula (quasi-copula).
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Fig. 2. Parametric family of diagonals (δk,α) (left) and copulas C(δk,α) (right) of

Example 3 with k = 1/2, where (∗1) stands for x ∧ y + (1− 2α)(x ∨ y) + 2α− 1 and (∗2)

stands for α
1−α

((x ∧ y) + (1− 2α)(x ∨ y)).

5. CONCLUDING REMARKS

We have completely solved the problem of representating quasi-homogeneous copulas
by means of their diagonal sections. Moreover, a new method of constructing copulas
from convex diagonal sections was introduced. Recall that there are several methods
of constructing a copula when a diagonal section δ : [0, 1] → [0, 1] (non-decreasing,
2-Lipschitz, bounded from above by the identity function and δ(1) = 1) is given.
The weakest copula C[δ] : [0, 1]2 → [0, 1] such that C[δ](x, x) = δ(x) is the so-called
Bertino copula given by

C[δ](x, y) = (x ∧ y)−min{t− δ(t) | t ∈ [x ∧ y, x ∨ y]}

see [3, 11], or [13]. On the other hand, the diagonal copula Cδ : [0, 1]2 → [0, 1]
introduced in [10] and given by

Cδ(x, y) = min

{

x, y,
δ(x) + δ(y)

2

}

is the strongest symmetric copula satisfying Cδ(x, x) = δ(x) (but not necessarily the
strongest copula with diagonal section δ).

Other methods known from the literature, see, e. g., [4, 5] or [7], are restricted
to special classes of diagonal sections. Observe that in the case of our construction
method (restricted to convex diagonal sections), the only diagonal copula Cδ coin-
ciding with C(δ) is the strongest copula M (δ = id is the only diagonal section related
to the unique copula C = M). On the other hand, the only Bertino copulas which
can be obtained by our construction are related to a parametric class (δa)a∈[0,1/2] of
diagonal sections given by

δa(x) = max

(

0,
x− a

1− a

)
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and the corresponding copulas C[δa] = C(δa) : [0, 1]2 → [0, 1] are given by

C(δa)(x, y) = max

{

0, (x ∧ y) +
a

1− a
((x ∨ y)− 1)

}

with boundary members C(δ0) = M and C(δ1/2) = W .

For any copula C : [0, 1]2 → [0, 1] and a diagonal section δ ∈ D, the function
C(δ) : [0, 1]2 → [0, 1] given by

C(δ)(x, y) = C

(

δ(x ∨ y),
x ∧ y

x ∨ y

)

for all x, y ∈ [0, 1] (13)

(with the convention 0/0 = 1) is a function fulfilling the boundary properties of
copulas, and C(δ)(x, x) = δ(x). Note that the same is satisfied if we alternatively
take the function

C(δ)′(x, y) = C

(

x ∧ y

x ∨ y
, δ(x ∨ y)

)

for all x, y ∈ [0, 1].

It is an interesting open problem for which C and δ also C (δ) (or C(δ)′) is a copula.
For the product copula Π, (13) can be written as

Π(δ)(x, y) = δ(x ∨ y)
x ∧ y

x ∨ y
for all x, y ∈ [0, 1] (14)

and the complete characterization of all copulas having the form Π(δ) can be found
in [6], where these copulas are called semilinear. Our representation of quasi-
homogeneous copulas also contributes to the above mentioned open problem. Indeed,
let δ ∈ D be a convex strictly increasing diagonal section. Then δ−1 is concave
and it is a multiplicative generator of a copula Dδ : [0, 1]2 → [0, 1], Dδ(x, y) =
δ(δ−1(x)δ−1(y)). However, then

D
(δ)
δ (x, y) = Dδ

(

δ(x ∨ y),
x ∧ y

x ∨ y

)

= δ

(

(x ∨ y)δ−1

(

x ∧ y

x ∨ y

))

= C(δ)(x, y)

is a quasi-homogeneous copula (see Theorem 6).
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